
VIRTUAL BATTLESPACE
BEHAVIOR GENERATION

THROUGH CLASS IMITATION

THESIS

Bryon K. Fryer, Jr., Second Lieutenant, USAF

AFIT/GCO/ENG/11-04

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of Defense,
or the United States Government. This material is declared a work of the U.S.
Government and is not subject to copyright protection in the United States.

AFIT/GCO/ENG/11-04

VIRTUAL BATTLESPACE BEHAVIOR GENERATION

THROUGH CLASS IMITATION

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science

Bryon K. Fryer, Jr., B.S.

Second Lieutenant, USAF

March 2011

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GCO/ENG/11-04

Abstract

Military organizations require realistic training scenarios to ensure mission readi-

ness. Furthermore, developing the skills required to differentiate combatants from

non-combatants is important for ensuring the Law of Armed Conflict is upheld. In

Simulated Training Environments, which serve as a main resource for developing these

required skills, one of the open challenges is to correctly simulate the appearance and

behavior of combatant and non-combatant agents in a realistic manner. We show

that a statistical learning machine can be used to observe the behavior of an agent

and objectively determine if the agent’s behavior is appropriate. Our approach is

to first train the statistical learning machine by allowing it to observe thousands of

iterations of agents performing what we define as desired behavior. Then we use the

same learning machine to drive the behavior of a single new agent and compare the

new agent’s behavior to the prior observed behaviors. Following the comparison, the

machine evaluates how close the agent behavior is to that of the desired behavior. Our

construction of a data driven agent is capable of imitating the behaviors of the Virtual

BattleSpace 2 behavior classes while also being configured to advance to a waypoint

specific goal. The resulting agent supports the conjecture that combatant and non-

combatant behaviors within simulated environments can be improved through the

use of behavioral imitation. We are successful in creating this imitation agent with

the ability to imitate four out of five classes of VBS2 Readiness Postures and also

show that the incorporation of non-imitation based goals can be compatible with our

agent’s imitation abilities. Through these accomplishments, a new behavior genera-

tion tool is presented to training developers, which in turn, can be used to increase

confidence in the accuracy and applicability of Simulated Training Environments.

iv

Acknowledgements

First and foremost I am thankful for my fiancé and her unwavering support

through this challenging endeavor. These last six years have been amazing; I can

only imagine how awesome the future will be! (×∞)

I would like to thank the guidance and support of my advisor, Lt. Col. Borghetti,

as well as my committee members. I would also like to thank the Air Force Research

Laboratory’s 711th Human Performance Wing for their sponsorship of this research

as well as their facilitation of inspiring meet-ups and idea discussions. Finally, I

would like to thank the Numerica Corporation and their incredible personnel for

their technical support and extensive help.

Bryon K. Fryer, Jr.

v

Table of Contents

Page

Abstract . iv

Acknowledgements . v

List of Figures . viii

List of Tables . ix

List of Abbreviations . x

I. Introduction . 1

1.1 Motivation . 3
1.2 Problem Description . 4
1.3 Contribution . 5

II. Literature Review . 8

2.1 Agent Behavior Generation . 8
2.1.1 Entertainment Focus . 9
2.1.2 Realism, Immersion, and Training . 10

2.2 Traditional Behavior Generation Approaches . 11
2.2.1 Scripted Agents . 11
2.2.2 Machine Learning Agents . 13

2.3 Behavioral Generation Through Imitation . 14
2.3.1 A Behavioral Imitation Framework . 16
2.3.2 Limitations of the Framework . 17

2.4 A Motivating Domain . 18

III. Methodology . 19

3.1 Problem Definition . 19
3.2 Problem Approach . 20

3.2.1 Observation of Behaviors . 20
3.2.2 Representation of Behaviors . 25
3.2.3 Reproduction of Behaviors . 27

3.3 Evaluation . 32
3.3.1 Classifier Performance Evaluation . 33
3.3.2 Agent Imitation Evaluation . 33
3.3.3 Agent Imitation and Goal Utility Evaluation 34

vi

Page

IV. Results . 35

4.1 Classifier Performance Evaluation . 35
4.2 Agent Imitation Evaluation . 36
4.3 Agent Imitation and Goal Utility Evaluation . 38

V. Conclusion . 41

5.1 Analysis of Results . 41
5.2 Future Work . 42

A. Feature Generation and Classification of Agent Behavior in
a Virtual Battlespace Simulation . 45

A.1 Introduction . 45
A.2 Related Work . 47
A.3 Research Problem & Approach . 48

A.3.1 Phase 1: Agent Simulation Setup . 49
A.3.2 Phase 2: Path-based Classification . 51
A.3.3 Phase 3: Behavior-based Classification . 52
A.3.4 Phase 4: Limited Observability Behavior

Classification . 54
A.4 Results . 54
A.5 Conclusion and Future Work . 57

B. VBS2 Specifications and Definitions . 58

B.1 Combat Modes . 58
B.2 Readiness Postures (Behaviors) . 59
B.3 Unit Stance . 60

C. Average Class Imitation Accuracy and Goal Completion
Rate over α . 61

D. Scenerio Generation Specifics . 62

Bibliography . 64

vii

List of Figures

Figure Page

1. VBS2 Agent Behavior Selection . 21

2. Behavior Generation Scenario . 24

3. VBS2 Area of Interest . 25

4. Behavior Generation Agent Model . 27

5. Average Class Imitation Accuracy and Goal Completion
Rate over α . 39

A.1. Two Scripted Agent Trails . 50

A.2. Relative Agent Movement Directions . 52

A.3. Pairwise Average EWA . 55

A.4. Weighted Average BC . 55

A.5. Five-Class EWA . 56

viii

List of Tables

Table Page

1. Behavior Imitation Frameworks . 17

2. Action Set Parameters . 28

3. Classifier Accuracy . 35

4. Agent Behavior Classified Accuracy . 37

D.1. X Cordinates . 62

D.2. Y Cordinates . 62

D.3. Start Locations . 62

D.4. Traversal Selections . 63

ix

List of Abbreviations

Abbreviation Page

AOR Area Of Responsibility . 1

FPS First Person Shooter . 2

CGF Computer Generated Forces . 3

STE Simulated Training Environment . 4

NPC Non-Playable Characters . 5

OaNC Opponent and Non-Combatant . 5

VBS2 Virtual Battle Space 2 . 21

API Application Program Interface . 21

x

VIRTUAL BATTLESPACE BEHAVIOR GENERATION

THROUGH CLASS IMITATION

I. Introduction

It was Combat Rescue Officer Lieutenant James Davis’ second tour in South West

Asia. This time, however, the stress was getting to him. During his last tour, his

team had become acclimated to the rural and mountainous terrain indigenous to

the region. His team had also become accustomed to the overt hostile identification

that this sparse terrain had gifted to them. When his elite group of Pararescuemen,

Combat Controllers and Special Operations Technicians, was inserted into a hostile

Area Of Responsibility (AOR), the enemy was clearly defined and relatively easy to

suppress. During this second tour, this luxury was replaced with a new found feeling

of persistent reevaluation as their surroundings had been replaced by a dense urban

environment, occupied by a disgruntled and tightly wound population. Davis and his

team realized the imminent risk of civilian fratricide created by such a scenario. As

the need for caution increasingly elevated in this complicated environment, day by

day Davis came to feel that it was only a matter of time before tragic consequences

befell his unit. Though trained to near perfection in his conscious abilities, Davis

never dreamed that it would be his unconscious instincts that would be tested when

his team was airlifted to the site of a downtown suicide bomber attack during their

seventh week on station.

As a Combat Rescue Officer, Davis had been given the most advanced and ex-

tensive training that any service member could obtain. His physical abilities, combat

knowledge, and leadership skills were honed to the pinnacle of human capacity. His

1

mind was similarly trained and equipped with an extensive array of leadership and

reactionary toolsets that allowed him to prevail in the most stressful of situations.

Many of these physical and mental preparations were conducted in real world ex-

ercises and training. When these exercises did not fully explore and hone his abilities,

his training was supplemented with First Person Shooter-style (FPS) training. These

types of simulations were especially useful to condition his recognition of and ap-

propriate response to non-combatants and combatants within a hostile environment.

Davis displayed exceptional performance in these training scenarios, owing largely to

his hobby as a ‘gamer’ before his commission. Just as he could complete the entire

Halo trilogy in one sitting, he could successfully complete series of training scenarios.

His skills in this section of his training were recognizable even to the other trainees.

It earned him the unofficial call sign of “Spidey,” as his counterparts were often im-

pressed with his ability to intuit the next actions and locations of the opposing forces

and non-combatants within the training scenarios. Davis was also able to distinguish

between the non-combatant actors and the combatants at a virtual distance that

depicted actors as only a few pixels. Davis’ recollections of his old call sign were

promptly interrupted when the HH-60 pilot alerted the team that they were one-mile

from the Landing Zone.

Davis and his team was the first unit into the AOR, fast roping into a maelstrom

of chaos in the downtown market square. Their pre-brief indicated that the bomber

had targeted a police recruitment location that was being protected by six Security

Forces Airmen. Davis and his team also knew that, after the explosion, there was

a report of additional gunmen firing near the landing zone. This information had

been relayed to them by the only conscious airman, who was receiving treatment

within sixty seconds of Davis’ team hitting the ground. After the team had rallied

at the cover position, they began the systematic process of securing the immediate

2

perimeter. Davis’ commands and actions were precisely timed as the team secured

the area. It was then, as he was moving down a tight corridor, that approximately five

feet ahead and to his left, a door flew open. A large, dark figure quickly emerged from

the blackness of the doorway, and without looking, the figure began running down the

corridor. The close proximity of the noise and the speed at which the figure appeared

had caught Davis off guard. It was, however, not more than a quarter of a second later

that he had his weapon targeted on the figure and another quarter of a second before

his right index finger was softly pressed against the trigger. While time had frozen

in this crucial moment, Davis had one clear thought resonating within his mind; that

the outcome of this instant would forever change him. In this same instant, he also

knew that he did not have the ability to escape this situation. He would be required

to determine the fate of the figure, and there was not time to deliberate nor weigh

any ramification of his dire choice. Before that seemingly infinite yet infinitesimal

second reached its conclusion, James Davis had already made his decision.

1.1 Motivation

A FPS training environment, as used in Davis’ training, places the trainee in the

role of a single individual inside a simulated environment. The player controls this

individual as if they were that person, with the goal of achieving tactical objectives

as well as avoiding harm to their virtual representation. The artificial actors within

that environment, known as the Computer Generated Forces (CGF) [15], aid in the

creation of an artificial training scenario and provide the human element within the

virtual world. CGFs also aid mightily in accomplishing the most important goal of any

FPS environment; to create a high a level of immersion for the player. Immersion is

the concept that when the situation and the realism of the environment are sufficiently

accurate, the trainee will interact with and perceive the virtual world as if the same

3

events were unfolding in the real world. Within these environments, the goal of player

immersion carries increased weight. As a result of the training that is conducted

within a Simulated Training Environment (STE), military members are expected to

apply the knowledge and experience gained into real world situations. If the immersive

aspects of the STE are lacking, the result can be improper training which could lead

to unnecessary casualties.

The critical decision that Lieutenant Davis faced is not limited to career fields

that lend themselves toward special operations and increased combat involvement.

All deployed service members require the ability to make immediate and resolute

decisions. In order to prepare service members with a skill-set designed to prop-

erly handle these instant reaction situations, our ability to facilitate appropriate and

actionable training needs to be evaluated.

The current approach for attempting to fulfill this requirement relies on FPS

environments. This training not only lacks in the ability to present quality immersive

training environments, but it also lacks a way of measuring the events within the

scenario with a believability scale that articulates a standard. Put simply, the state-

of-the-art approach currently used to deliver training within a FPS environment is

not measuring up to the requirements needed to facilitate effective and immersive

military training.

1.2 Problem Description

Improving the realistic capabilities of FPS environments is an open area of re-

search that is shared by academics, the entertainment industry, and the military

[15]. Specifically, the military leverages advancements within this domain to improve

training through the use of Simulated Training Environments. These new methods

of training allow for the simulation of complex and otherwise prohibitively expensive

4

live training exercises. While the benefits of simulation-based training are readily ap-

parent, the requirements for realistic behaviors and the need for the ability to create

them is an area of research that has received little attention. FPS agents that rep-

resent Non-Player Characters or Opponents (NPC) must appropriately replicate the

behavior of a human in order to be useful as a CGF [21]. While there are various tech-

niques used to accomplish this desired end state, there is a distinct division between

the intended audience of the CGF and the goals of the application in which it resides.

These audiences and goals roughly divide into two domains; the entertainment-based

FPS Video Games and the training-based Military Simulated Training Environments.

For FPS environments that are primarily focused on entertainment, the dominant

design objective is to create NPC behaviors that support a set of varying levels of

difficulty that allow the consumer to tailor their experience. Failure to achieve immer-

sion within an entertainment focused FPS environment can result in a temporarily

dissatisfied customer and potential lost profits for the producer.

Failures are more costly within a military STE. When Opponent and Non-Combatant

(OaNC) actors are expected to facilitate an immersive and realistic environment that

presents more than various levels of difficulty, but rather delivers teachable objec-

tives and real world context, failures are unacceptable. This is because one of the

imperative outcomes is the applicability of the training in real world situations. If

the OaNC agents behave in non-standard and unrealistic ways during a training ex-

ercise, the quality of the training will be degraded and improper training could lead

to unnecessary casualties.

1.3 Contribution

This research effort focuses on improving CGF realism by utilizing a trained knowl-

edge of behavioral patterns in order to influence agent interactions with the simulated

5

environment. This is accomplished by acquiring a set of distinct behavioral patterns

which are of interest to be learned, learning the representative features that encapsu-

late the behaviors, and finally, using those learned behavioral encapsulations to drive

agent actions.

Given a specific context and observed behaviors within an environment, can agents

be designed and implemented to utilize these provided behaviors and gained infor-

mation in order to generate verifiable believable behaviors, ultimately improving the

legitimacy and applicability of a STE? A further extension of this research question

examines if using this behavior generation technique is also capable of achieving ge-

ographically situated goals while generating these behaviors that are behaviorally

driven.

This research effort presents a new tool to STE and training simulation designers.

It provides a new way of developing agents with realistic actions by incorporating

representative behavioral patterns.

Our agent is capable of exibiting a distinct behavioral pattern in the simulated

environment. Our evaluations indicate that it was effectively able to align its behav-

iors toward the representative features of a desired class of behaviors. Furthermore,

we have found that this imitation ability was able to be utilized while achieving a

geographic goal.

This research does not stand alone as a final prescription for a realistic Computer

Generated Force in Simulated Training Environments. It does, however, provide a

demonstration of the ability to imitate trained behaviors that are guided by appropri-

ate recorded behaviors. This approach to agent creation facilitates an agent’s ability

to create verifiable behaviors. Subsequently, if used as an additional tool in the de-

velopment of training for our servicemen and women, improves training, then it has

accomplished its ultimate goal. Through this improved training, one could be con-

6

fident that Combat Rescue Officer Lieutenant James Davis would be able make the

correct decision.

The remainder of this document is organized as follows: Chapter II examines

related approaches that have been applied within this problem domain, as well as

examining uses of behavioral imitation within simulated environments. Chapter III

details our approach to testing our hypothesis including data set generation, exper-

imental design, agent creation and evaluation. Chapter IV details the results of our

agent’s performance and its impact. Finally, Chapter V examines the results of our

tested hypothesis, its impact, and the prospective future works that are appropriate

and achievable.

7

II. Literature Review

This research is an effort to develop a novel method to generate First Person

Shooter Opponent and Non-Combatant behaviors appropriate for training scenarios.

This chapter provides background information and related research efforts that focus

on realistic behavior generation techniques. It also examines how current methods

and the underlying performance mechanisms that support them are not appropriate

for this effort. Section 2.1 begins this discussion by outlining the current standard

approach to behavior generation, and then concludes by contrasting that with the

demands of our problem. Next, Section 2.2 outlines the major methodologies that

have attempted to create realistic agent behavior. Finally, Section 2.3 examines the

framework of agent behavior generation through imitation.

2.1 Agent Behavior Generation

The goal of First Person Shooter Games and Simulated Training Environments

are to create immersive environments. In pursuit of this goal, developers have often

focused on visual realism through graphical performance [34]. While this pursuit is

meritorious in and of itself, by creating a virtual world that is visually appealing and

convincing, a complementary focus has arisen. This focus is the creation of realistic

human-like entities. These human-like entities will be referred to simply as agents.

Agents that are tailored to exhibit opponent and non-combatant actions within this

type of FPS environment are also called Computer Generated Forces (CGF) [21]. The

complete definition of a CGF further emphasizes that the agent must appropriately

replicate the behavior of a human [21]. This CGF requirement will be the baseline for

the definition of realistic behaviors with respect to an agent’s behavior generation.

The concept of realistic behavior generation has only recently gained momentum

8

within the academic and commercial realms. The current focus of these two indus-

tries is centered upon improving entertainment value [29, 30, 31]. While any new

research is encouraging, appropriate acting agents are also needed for use in training

environments. The reasoning and background behind current, entertainment focused

research will be detailed in Section 2.1.1 followed by the requirements and background

associated with the need for explicitly realistic behaving agents in Section 2.1.2.

2.1.1 Entertainment Focus.

When a developer sets out to create the agents that will populate their FPS

environment, developers often channel their efforts toward the product user. If the end

user is expected to approach the environment with the intentions of being entertained,

this in turn dictates a specific agent development approach. In general, researchers

and game developers consider in-game opponents to be entertaining when they are

difficult to defeat [9]. Although this may always be true for advanced players, it is

not so for inexperienced players; for these casual gamers, a game is most entertaining

when it is challenging but beatable [29]. The culmination of the need for sophisticated

in-game actors within the video game entertainment industry has become evident with

the recent rise in and demand of multi-player focused game-play, where skill-ranked

human players battle against one another in order to attain an appropriate level of

difficulty. This is a significant indication that game players are underwhelmed by the

current abilities of the behavior mechanisms that govern their computer-controlled

opponents and ultimately prefer to seek out human-controlled opponents [23]. The

improvement of the quality of agent behaviors, while preserving the characteristics

associated with high entertainment value [29], is desired in the event that human-

controlled opponents are not available or are not conducive to advancing the users’

training [30].

9

2.1.2 Realism, Immersion, and Training.

The word ‘realism’ carries several denotations; within the context of simulated

environments, realism is the form which follows the style of art and literature that

illustrates the depiction of subjects as they appear in everyday life. In this way,

agent behavior generation techniques are attempting to represent actors realistically

by portraying their behaviors that is representative of the desired entities’ behaviors

within the real world. This behavioral realism, coupled with the extent to which a

subject will believe that they are interacting with the real world, creates a higher

degree of overall realism [5]. With increased behavioral realism and more effective

immersion also comes an increased ability to achieve social influence. Put simply by

Guadagno et. al: “[T]he more realistic the behaviors of virtual human representations

... the more they will influence individuals with whom they interact” [18].

These desires for realistic behaviors and social influence converge in a single de-

sired goal within simulated environments: immersion. Immersion occurs when the

simulated environment perceptually envelopes an individual in such a way that they

cannot perceive nor detect the difference between that simulated environment and

the physical world [18]. This goal is important because an immersed subject is more

likely to feel that they are truly in the same environment with the simulated actors, as

opposed to a subject that is not immersed. Ultimately, immersion facilitates training

and improves the retention rate of information and context specific awareness [5, 18].

These advantages warrant high value in military training environments.

The Office of the Chief Scientist of the United States Air Force has emphasized

this military value, and the need for improvement in the forward-looking Technol-

ogy Horizons [22]. They cite the need for improved human behavior modeling and

cultural behavior modeling as a part of advanced constructive discovery & training

environments. This need, among a short list of others, is one of the “most essen-

10

tial Science & Technology for Air Force to pursue over the next decade” [22]. This

expressed need motivates our research efforts; seeking to encapsulate and represent

complex behaviors in a succinct feature space as well as facilitating the application of

these models in improving training environments by providing trainers and trainees

with a realistic behavior generation construct that is based in observation.

2.2 Traditional Behavior Generation Approaches

This section details the approaches that are used to generate agent actions within

a simulated environment. These approaches range from Role Playing Games to tra-

ditional First Person Shooters. However, they all have a common goal: developing an

agent to appropriately or realistically respond to dynamic environments. Each sec-

tion’s behavior generation solution details how the problem is approached, what the

successes of the approach were, and the shortcomings and assumptions that limit the

approach. It is also important to consider the ability of each technique to generate

realistic behaviors in a highly dynamic environment. In order to examine these tech-

niques that are striving for a realistic behavior, we compare the expected behaviors

with the appropriate replication of human behaviors.

This type of examination stems from the idea of an oracle which has the ability

to faithfully reproduce the correct and desired output independently of the system

which is being evaluated [19]. This means that for each behavior generation technique

that we consider, we can objectively evaluate its expected output with respect to the

behaviors that a human would have displayed in the same situation.

2.2.1 Scripted Agents.

A ‘script,’ within the context of the agent development, is a finite set of instruc-

tions or actions that an agent executes in sequence [30]. These defined actions give

11

the agent the full scope of behaviors which they can exercise within the environment.

Scripted agents (agents whose main deliberation and action components rely on a

script) are used to create a simplistic appearance of intelligence. Scripted agents are

capable of interacting with their environment and achieving a defined goal.

Scripted agents are widely used to implement simulated opponents and non-

combatant behaviors. Specifically, scripted behavior generation appeals to game de-

velopers because of its simplicity and directness. Their ability to directly dictate

behaviors makes the agent understandable, predictable, adaptable to specific cir-

cumstances, easy to implement, easily extendable, and usable by non-programmers.

Because of this accessibility, many researchers and game developers have shown that

scripted agent behavior generation is applicable to many domains including Real Time

Strategy, First Person Shooter, and Role Playing Games [35].

These accomplishments, however, are dwarfed by the shortcomings associated with

scripted agent behavior performance. As mentioned previously, scripted agents are

capable of achieving a defined goal and can interact with the environment as defined

by their component scripts. As the definition of a scripted agent implies, these abilities

are limited to goals and methods that have been pre-determined and dictated within

the script. This static nature of scripted agent behaviors tends to increase their

length and complexity as increased numbers of behaviors or more complex behaviors

are added [7]. From static nature and complexity follow two issues that severely

cripple scripted agents: adaptability and exploitability. Because the agent behaviors

and reactions are pre-defined they cannot adapt to new environments. Therefore,

agent behaviors that are selected within new environmental conditions may result in

poor or incorrect behaviors. Similarly, if a human player acts in a way that the agent

is not prescribed to handle, the player may be able to exploit the agent. This type

of poor performance is desirable in neither the entertainment domain [9, 30, 31] nor

12

the training domain [38].

When comparing scripted behavior generation technique with the behaviors of

a real human, we would find that the agent is very capable of generating realistic

behaviors for every situation that it has applicable scripts to execute (assuming that

the script writer has taken up the resource intensive task of writing these scripts

in a realistic manner). The scripted behavior generation technique would have a

significantly lower realistic behavior generation ability given the entire set of possible

situations. It is for this reason, coupled with the intensive resources required to write

scripts for each situation, that a purely scripted approach is not generally suited for

realistic agent behavior generation.

2.2.2 Machine Learning Agents.

From the shortcomings apparent in the widely used scripting techniques, Spronck

et al. set out to incorporate machine learning techniques into the agent design, making

it capable of adapting its behaviors [30]. This adaptive behavior generation, termed

Dynamic Scripting, builds upon the scripted paradigm. Characterized by Spronck et

al. as a stochastic optimization approach, dynamic ccripting seeks to find the most

effective scripted behavior given its current environment. This is accomplished by

attributing weights to a rule-base (the full set of scripted actions that can be selected

from) in order to select the current script that controls the agent’s behavior. The

agent evaluates its rule weights based on the performance of each selection; increasing

weights where the agent is successful and decreasing weights where the agent fails.

This allows the agent to rapidly increase the appropriateness of the agent’s actions,

even in changing environments [30].

Spronck et al. and Dahlbom et al. have shown the successes of the dynamic

scripting technique in Computer Role Playing (Neverwinter Nights) [31] and Real

13

Time Strategy [10, 11] environments respectively. Specifically, Spronck et al. demon-

strated that their dynamic scripted agent was able to adapt its actions to defeat a

static opponent. The process was also shown to achieve dominance over the static

opponent faster than a randomly control method (Monte-Carlo). The dynamically

scripted method of agent behavior generation ultimately adds diversity, adaptability,

and appropriate difficulty to the opponent.

These additional attributes significantly improve an agent’s ability to adapt its

behaviors to environmental and human-player actions; however, the basic actions of

the agent’s behaviors need to be manually scripted. The agent behavior scripts that

are created also require additional information, limiting the environmental attributes

where each behavior is appropriate. Finally, if these conditional arguments are not

correct, rule-base weights can be incorrectly affected if actions are taken that are

inappropriate for its current state [30].

Due to these limitations, an agent’s behaviors that were generated using dynamic

scripting efforts display similar performance to scripting techniques. Contrast will

occur in comparison to a traditionally scripted agent behavior generation because

the dynamically scripted agent behaviors will behave realistically for a larger set of

situations due to its adaptability. Ultimately, dynamic scripting is effective for opti-

mization of the set parameters which dictate the weighting process. Unfortunately,

the ability to optimize behavior selection does not incorporate the ability to replicate

the behaviors of a human actor outside of the manually dictated scripted behavior

set.

2.3 Behavioral Generation Through Imitation

Each traditional approach to agent behavior generation as outlined in Section 2.2

has been limited in its ability to produce realistic behaviors purely by algorithmic

14

means. These traditional approaches were often a focus in modeling an actor’s be-

haviors based on the cognitive processes that underlie their actions and differenti-

ations that distinguish basic and advanced skills (opponent difficulty tailoring). A

contrasting approach for modeling agent behaviors focuses on modeling the actor’s

behavioral patterns, preferences, or representative characteristics, called behavioral

imitation [37]. This section looks at methods that have been put forth to accomplish

this type of user modeling by incorporating a dataset of known good behaviors. This

type of imitation-based agent behavior generation is accomplished by running an in-

duction algorithm over the traces of good behaviors [2]. This process has been applied

to areas of research like robotics [2], cognitive science [8], and user modeling [37].

Only recently, however, have these imitation techniques been adapted to simulated

agents [1]. This type of behavioral imitation has distinct benefits and challenges,

which are outlined below.

One starting point for approaching and understanding behavioral imitation is to

begin by explaining what it is not. Behavior imitation approaches do not focus on

creating a strict clone of the training behaviors. Like the difficulties exhibited by

purely scripted agents, these rule sets would need to be fully exhaustive in order to

be robust, despite changes in initial conditions and novel environments [2]. For that

reason, we distinguish behavioral cloning from behavioral imitation.

In order to define what behavioral imitation actually means within the context

of simulated environments, it is appropriate to look outside of the simulated agent

domain and consider the work in robotic imitation by Bakker and Kuniyoshi [3].

Bakker and Kuniyoshi defined imitation as the event in which an agent learns of

a behavior through the execution of that behavior by a teacher [3]. Through this

process of learned behaviors, the agent is now capable of executing a behavior that

it previously may have not known was possible or applicable. Bakker and Kuniyoshi

15

display the benefits of this additional ability by illustrating three main areas that

behavioral imitation helps improve.

First, an agent immediately begins learning behaviors that are likely to be ef-

fective. Specifically, by observing other agents’ actions, they are learning behaviors

that are already being used by agents successfully operating in the same environ-

ment [3]. Next, they indicate that the medium for learning is a common ground that

has very low entry requirements. Agents can learn behaviors from each other without

having any similar software, hardware, or shared communication mechanism because

the communication “takes place at a high level, in terms of actions” [3]. Finally,

Bakker and Kuniyoshi indicate that this new incorporation of behavioral imitation

can operate seamlessly with other existing learning schemes. The resulting behav-

ioral imitation can serve as an exploratory function of the problem domain while

other learning schemes can then optimize the agent’s performance.

With our exploration of behavioral imitation thus far, it would seem that behav-

ioral imitation only lends itself toward replication of instantaneous behaviors. This

notion is challenged by Thurau and Baukhage by performing behavioral imitation on

all three levels of agent behaviors: Strategies, Tactics, and Reactive Behaviors [33].

2.3.1 A Behavioral Imitation Framework.

Both Bakker [2] and Bain [3] have put forth frameworks for behavior imitation

and both are in general agreement as Table 1 depicts. They also agree that before

approaching the framework, the agent design must define the goals and how the agent

should evaluate and optimize the available behaviors. Each defined framework can

be seen in comparison in Table 1.

This framework has been utilized in effective behavioral imitation agents. Their

successes cover a wide array of domains including robotic behavior learning [3], ad-

16

Table 1. Behavior Imitation Frameworks

Bakker and Kuniyoshi [2] Bain and Sammut [3]
1. Learn the actions that achieve the goals Observe the action
2. Construct high-level features from training behaviors Represent the action
3. Automated learning and interaction Reproduce the action

vanced FPS opponents [33], auto-pilot agents [2], as well as Robo-Soccer agents and

coaches [1, 27].

2.3.2 Limitations of the Framework.

The Behavior Imitation Framework does have limitations. As Webb et. al. out-

line, behavioral imitation induces drawbacks [37]. The first of these is the need for

large datasets. The need for large datasets has been noted in many of the above agent

designs and has, for some, been a limiting factor for the abilities of the agent. For

example, the behavior capturing component of the Robo-Soccer agent, developed by

Aler et. al. was not robust and user-friendly enough to gather a large dataset [1]. This

then limited the abilities of the imitation behaviors. However, large dataset require-

ments are understandable. As Valiant has noted, any sufficiently difficult problem

domain will result in learning algorithms that require many training examples to be

accurate [36].

The next concern for behavioral imitation is the need for labeled datasets. Labeled

datasets are needed because supervised machine learning explicitly requires labeled

data while behaviors that are manifest to the agent may be without readily apparent

labels. Webb et. al. also present three typical solutions for this need: explicit

labeling (which may be prohibitively expensive), inferences based on logical clues

(which require simple and label-able actions), and using a small set of labeled data to

seed the behavior pool (which would be generalizable to the larger set of behaviors).

17

2.4 A Motivating Domain

The examination of related research has shown that there is a noticeable gap in

traditional realistic agent generation techniques. In order to bridge this gap, a new

form of agent generation has been found in Behavior Imitation. This new paradigm

has proven to be capable of motivating effective performance. However, it too lacks a

strong appeal toward explicitly realistic agents. While the Behavior Imitation Frame-

work has its own difficulties, it provides a strong foundational design for the creation

of explicitly realistic agents, explored further in Chapter III.

18

III. Methodology

3.1 Problem Definition

Non-combatant and opponent behaviors developed for use in Simulated Training

Environments (STE) are not currently built with the explicit goal of realistic or

believable behaviors. Within the STE, believability is the measure of how well an agent

performs an action or series of actions in relation to how that action is performed

by the same (intended) entity within a real world environment. Verifiability is the

ability to quantitatively measure correctness. As discussed in Section 2.3.1, measuring

and evaluating believability remains an open area of research. Working within these

limitations, and in an effort to improve believability in an empirically measurable

way, we focus on incorporating verifiability into our agent behaviors. Throughout the

rest of this research we call this focus Verifiable Believability.

With this focus defined, it is appropriate to outline our research question: Given a

specific context and observed behaviors, can agents be designed and implemented that

create behaviors that explicitly achieve verifiable believability? Furthermore, is this

ability compatible with a simultaneous objective of achieving geographically oriented

goals? For the purposes of this experiment these geographically oriented goals are

defined by traversing an area of interest from a start location, and completing the

desired goal by arriving at a destination location.

The remainder of this chapter follows the Behavioral Imitation Framework out-

lined in Chapter II. Section 3.2 outlines the observation and representation portions

of the framework (Table 1) as well as the behavior production portion of the frame-

work. This examination of behavior production concentrates on the agent’s design

and how it makes use of the previous portions. Finally, Section 3.3 details the eval-

uations that examine the effectiveness of each component of the behavior imitation

19

framework.

3.2 Problem Approach

In order to create an agent that is capable of achieving the objectives set-out in

our research question, three main efforts are outlined. In lieu of real world data (that

is logistically prohibitive to gather for the scope of this proof of concept research),

synthetic behaviors are created, recorded, and labeled. A feature based classifier is

developed and trained on these synthetic behaviors. Once the classifier has been

established and trained, it is incorporated into the agent’s behavior generation mech-

anisms. The following sections describe each of these efforts.

3.2.1 Observation of Behaviors.

In order to generate synthetic behaviors for use in conjunction with the classifier

training process and subsequently within the agent’s behavior generation mechanisms,

we must consider the selection, design and creation of the environment where these

exemplar behaviors are generated, how they are generated, and finally, how they are

captured and labeled.

3.2.1.1 Simulated Training Environment - Virtual BattleSpace 2.

The Simulated Training Environment (STE) is the environment in which syn-

thetic agents and our new agent perform their actions. It includes obstacles, enemies,

friendly forces, civilians, and all other environmental attributes that are perceivable

by the agent throughout the course of the scenario (e.g., the weather conditions). The

environment dictates the complexity of the exercise and is appropriate in its scope for

the desired training purposes. It is important to keep the STE environment constant

throughout the classifier training, agent training, and agent evaluation phases in or-

20

der to reduce or remove any unaccounted-for behaviors which may affect performance

at any of these stages.

Figure 1. VBS2 Agent Behavior Selection

For the purposes of this research, we use the Virtual BattleSpace 2 (VBS2) soft-

ware suite as our STE. VBS2 is a commonly used training suite within many military

organizations including the United States Army [28], the United States Marine Corps

[20], as well as the United States Department of Homeland Security [14]. It also has

an advanced Application Program Interface (API) that allows for direct access to, and

manipulation of, actors within the environment. This allows recordable simulations

as well as advanced agent creation. The VBS2 military units have a set of selectable

readiness postures which facilitate the synthetic behavior generation. Figure 1 shows

the VBS2 Agent Properties selection (for this example, the “Safe” agent), as well as

the other possible Behavior Classes: Careless, Safe, Aware, and Combat. Each of

these Behavior Classes are described in detail in Appendix B. This labeling process,

while simulated in our experiment by VBS2 readiness postures, can be accomplished

on real world traces recorded from real world simulated training scenarios, real world

engagements, virtual reality simulated training scenarios, or any other environment

with behaviors of interest that are to be imitated.

3.2.1.2 Behavior Capturing and Labeling.

It is important to have the ability to record and analyze the behaviors of agents

within the STE. This functionality is needed for the analysis of both the synthetically

21

generated agent behaviors as well as our new mimicking agent. Recording is accom-

plished through the use of a VBS2 plug-in which records the instantaneous attributes

of each agent present in the simulation at 1 Hz. The attributes recorded include the

x, y, and z distances from the origin of the map (translatable to East, North, Up

coordinates), the orientation, and the velocity vector of the agent. These logs are

parseable and the attributes of each agent are discernable based on unique agent IDs.

Each waypoint that the agent is tasked with navigating is represented in one log

file, beginning when the agent embarks and ending when the agent arrives at the goal

waypoint. Finally, as each waypoint that the agent of interest is tasked to navigate

to is logged, the resulting log is added to the agent of interest’s Behavioral Class

set of logs. These labeled logs are used in the classifier training process detailed in

Section 3.2.2.

As a STE, VBS2 lacks the methods for automated data collection. In order to

accomplish this desired function within the STE, a number of additional components

that facilitate this process are incorporated into the behavior capturing and labeling

process. First, the logging process is facilitated by a logging plug-in that was devel-

oped by the Numerica Corporation [25]. Next, the agent of interest is created within

the environment, initialized to the desired readiness posture, instructed to hold-fire on

any combatants, and logging started. This is accomplished through the use of VBS2

scripting commands and the SimExec Agent. The SimExec Agent serves as a bridge

between the VBS2 environment and the other agents agents [24]. These other agents,

the SimExec Agent, and our new agent are developed within the Jack Agents Devel-

opment Environment (an agent oriented development environment which is built on

top of, and integrated with the Java programming language). After the agent has

successfully traversed the area of interest, it is removed from the simulation and the

logging plug-in is instructed to end the log. This process is repeated to collect data

22

for every scenario. Overall, this process allows for a large number of sample behaviors

to be observed in a fully autonomous manner.

3.2.1.3 VBS2 Behavior Classes as Synthetic Behaviors.

The readiness postures that VBS2 units exhibit serve as the classes that represent

the range of behaviors that make up the training data. Training data are labeled

instances of real or simulated behaviors used to train a classifier. The training data

contain the full set of population traces that are labeled according to the behavioral

class dictated by the readiness posture.

These postures have desirable components that make them an appropriate choice

for our proof of concept research effort. Locations and actions of the agents can

be recorded each time step in VBS2. The actual process of recording the agents is

detailed in Section 3.2.1.2. The available selection of behaviors also have a known re-

action to environmental factors. For example, an agent with the posture of “Stealth,”

given a destination waypoint and a combat stance of “Hold Fire,” upon encountering

an opposing force, assumes a prone position and avoids contact with the target, low

crawling to the destination.

3.2.1.4 Scenario Design.

The Synthetic Behavior Generation Scenario is designed in such a way that the

desired outcome is a feature rich set of behaviors that display a large subset of the

VBS2 Behavior Classes’ available behaviors. For this scenario, we choose an area of

interest to observe behaviors within a square grid of a VBS2 map (Figure 2, Left). The

map is a representation of The Ohio State University campus which includes a diverse

set of terrain [12]; however our area of interest is a selection from a section of this map

that has a consistent geography, free of obstacles, and empty of any agents or game

23

objects outside of those described below (shown in Figure 3). This simplicity decreases

the complexity of the VBS2 Behavior Classes’ interactions with the environment

and narrows those interactions to those objects and actors added with intention. A

detailing of the locations used for this scenario are found in Appendix D.

Figure 2. Behavior Generation Scenario. (Left) Scenario Setup. (Center) Single Start
Location Traversals. (Right) Full Traversal Saturation

The opposing forces in the scenario are represented by one agent at the center

of the area of interest. These agents are assigned a Combat stance of “Hold Fire.”

They are also given a command to remain at the same position throughout the data

collection to ensure that their presence remained constant between each iteration.

Figure 2 (Left), shows the location of the Opposing Forces.

Next, the agent’s starting locations and goal locations are defined. Each of the

solid black circles shown in Figure 2 represent a starting location and a goal location

and are located in a square grid around the area of interest. Each starting location has

five possible goal locations and is a goal location for five other starting locations. At

each starting location, the corresponding goal locations are discovered by selecting all

of the locations that are greater than three locations away from the starting location

24

Figure 3. VBS2 Area of Interest

(as shown in Figure 2, Center). This selection process ensures that the resulting

paths require interaction between the agents and the opposing forces. After each goal

location has been determined for each starting location, the area of interest has a set

of possible paths represented by solid lines in Figure 2 (Right).

Each VBS2 Behavior Class is directed from a start location to its corresponding

goal location a total of 2040 times. For each of the traversals of the area of interest, the

Behavior Capturing and Labeling process, detailed in Section 3.2.1.2, is accomplished.

3.2.2 Representation of Behaviors.

The feature generation and classification portions of our approach form the foun-

dation of the contribution of representing and learning Opponent/Non-Combatant

behaviors. Section 3.2.2.1 presents the feature-generation method that strives to cap-

25

ture the essential identifying and distinguishing aspects of agent behaviors. These

features are then learned as training behaviors using a distance-based classifier, de-

tailed in Section 3.2.2.2.

3.2.2.1 Feature Generation.

Position and orientation are recorded at a defined interval of 1 Hz and represent

the raw behavioral data. The record of an individual agent over the course of a

defined action is then reduced to a single point in multidimensional space. This

multidimensional space is defined by the derived features which have been shown

to encapsulate the behaviors. The derivation of these features and their ability to

encapsulate an agent’s behaviors has been outlined and evaluated in Appendix A.

3.2.2.2 Classification.

Our classifier is a supervised learning mechanism is used to identify a sample

from a population and assign it the correct label. Within our research, the classifier

processes a feature space sample and labels it according to the process which generated

the sample. In order to accomplish this functionality, a classifier is trained and

evaluated by presenting it a sub-set of the labeled population data and querying it

on the remaining unseen data. This process is called k-fold cross validation [13]. Our

classifier is presented with this training set, which is comprised of the samples created

by the feature generation outlined in Section 3.2.2.1. The classifier is trained and

evaluated by utilizing a leave-one-out cross validation. This training and evaluation

process is identical to the classification process outlined and evaluated in Appendix

A.

26

Figure 4. Behavior Generation Agent Model

3.2.3 Reproduction of Behaviors.

Equipped with the trained classifier generated through the feature generation and

classifier training process outlined in Section 3.2.2 and supported by the scenario

design and behavior capturing detailed in Section 3.2.1, we now describe the agent

creation process. The goals of the agent are to travel to a waypoint while behaving

in a manner that is indistinguishable from a specific class of behaviors. Within our

27

specific experiment, the goal is to cross the area of interest and to behave as a specified

VBS2 Behavior Class. The agent accomplishes this through the use of a utility-based

agent model that incorporates classifier action evaluation. It is important to note

that, although the readiness posture can be set in the VBS2 Agents while generating

training data, no such ability exists in the agents created for this research. This

processes shown in Figure 4 and described incrementally in the following sections.

3.2.3.1 Action Set Generation.

The agent first generates a set of possible actions from which it can select the best

to execute. An action is a tuple of velocity and orientation, where velocity is drawn

from 1, 3, and 5 m/s, and orientation is drawn from orientations at thirty degree

intervals beginning at zero. This results in a set of 36 possible orientation-speed

combinations. This sets of possible velocities and orientations are seen in Table 2

Table 2. Action Set Parameters

Velocity (m/s) 1, 3, 5
0◦, 30◦, 60◦,90◦

Orientation (degrees) 120◦, 150◦, 180◦, 210◦

240◦, 270◦, 300◦, 330◦

These ranges and increments were chosen in order to keep the evaluation and

action portions of the agent to less than one second. This computational time limit is

important to our agent’s approach because the action and logging intervals are set to

1Hz. For simplicity, the agent does not take into consideration objects or opponents

within the environment and simply generates this set of possible actions for future

review. The resulting orientation-speed combination [v, o] is represented as Ai where i

is one of the k possible actions for a given current state S. A given state is represented

by the location, time, and orientation [t, x, y, o] of our agent. The resulting action

operation is represented as

28

Ai × S → S ′i (1)

This process takes place in component (A) in the agent model detailed in Fig-

ure 4, where S is the current state input from VBS2 to the Action Set Generation

component.

3.2.3.2 Successor State Generation.

Once the set of orientation-speed combinations has been generated, these actions

are evaluated and the resulting deterministic agent attributes are calculated. This

is accomplished for each by applying the velocity and orientation combinations to

the current state S in the manner shown in Equation 1. The resulting n states are

delineated as S ′i where i is the same index of k that identifies the action Ai k possible

actions.

The agent must be able to keep track of its past states. In order to accomplish

this, a history vector is denoted as H. For example, a history consisting of n states

would be represented as H = [S0, S1, S2, . . . , Sn−1].

Each of the generated actions are then concatenated to a new temporary history

H ′i which is defined by the concatenation (⊕) of S ′i to H. The resulting history is

identified by i as it uniquely contains the new state S ′i.

H ′i = H ⊕ S ′i (2)

An example concatenation is shown in Equation 3.

H ′i = [S0, S1, S2, . . . , Sn]⊕ S ′i = H ′i[S0, S1, S2, . . . , Sn, S
′
i] (3)

The resulting n potential actions, now represented as histories, can be passed to

29

the feature set generation component of the agent. The Successor State Generation

component of the agent is illustrated as component (B) in the agent model detailed

in Figure 4.

3.2.3.3 Feature Set Generation.

Once the successor states have been generated and recorded in the temporary

history vectors each history can be mapped to a corresponding feature set. The

agent’s behavior history, including the new additional action that is being evaluated,

is submitted to the feature generation mechanism detailed in Section 3.2.2 and Ap-

pendix A. The resulting multidimensional point that represents these behaviors is

represented as F and the feature generation function is represented by f(). Using

this nomenclature, we can define the newly generated features Fi for the ith action

as:

Fi = f(H ′i) (4)

The resulting n potential actions and their resulting histories, now represented as

feature sets, can now be passed to the action selection component of the agent. The

Feature Set Generation portion of the agent is illustrated as component (C) in the

agent model detailed in Figure 4.

3.2.3.4 Action Selection Through Utility.

The last step in the agent’s decision making process is to select which action to

execute. This selection is evaluated in both feature space as well as simulated space.

The previous section has presented a set of n feature sets, each derived from an action

Ai. In order to determine which action is most behaviorally correct, we must consider

the trained classifier which will facilitate the feature space selection of the appropriate

30

action.

The desired class that the agent should represent is passed into the agent through

the Agent Parameters, as illustrated in the agent model in Figure 4 by the ‘C’ param-

eter. This parameter represents the trained class centers that were learned from our

generated data in Section 3.2.2.2. Each class that is learned is denoted by Cj, where

the particular class we would like to imitate is noted by j. As indicated in Section

3.2.2.2 these classification centers are an m-dimensional vector representing the point

in feature space which is the center of the class’ distribution.

Using the Euclidian distance between each feature in Fi and the classification

center Cj, we can determine which action is most similar to the desired class j in

feature space. This is calculated in Equation 5 for a feature space that contains m

dimensions. Function designation dF represents the distance in feature space and

each of the m dimensions are denoted as the second subscript of Fi and Cj.

dF (Fi, Cj) =
√

(Fi1 − Cj1)2 + (Fi2 − Cj2)2 + · · ·+ (Fim − Cjm)2 (5)

This Euclidian distance measurement is also used in simulation space to determine

the distance that the agent will be from the goal G at state S ′i. Function designation

dS represents the distance in simulation space. This goal location is passed into the

agent through the Agent Parameters and is illustrated in the agent model in Figure 4

by the ‘G’ parameter.

dS(G,S ′i) =
√

(Gx − S ′ix)2 + (Gy − S ′iy)2 + (Gz − S ′iz)2 (6)

Using these two distance measurements, we can now define a utility function that

will incorporate feature and simulation space in action selection. This results in a

utility function for each action that is evaluated as:

31

U(Fi, S
′
i) = α

(
1

dF (Fi, Cj)

)
+ (1− α)

(
1

dS(S ′i, G)

)
(7)

The only component of this equation that remains undefined is α. The α value and

its complement, (1−α), are set in order to determine how much utility is derived from

the goal completion versus the ability to imitate the desired class. This parameter, set

to values between 0 and 1, allows for the analysis of the tradeoff between behavioral

imitation and goal completion, however, through the course of an agent’s execution,

this parameter will be fixed. The chosen alpha level is passed into the agent through

the Agent Parameters. This is illustrated in the agent model in Figure 4 by the α

parameter that is passed to the Action Selection portion of the agent.

After calculating each utility value for all of the possible actions, the action with

the largest utility is selected. This action is then passed to the Agent Action portion

of the agent. The selected history H ′ is also passed to the agent’s history storage as

indicated in Figure 4. The Action Selection Through Utility portion of the agent is

depicted as component (D) in the agent model detailed in Figure 4.

3.2.3.5 Agent Action.

The final step is for the agent to pass the action that has been chosen to the

environment and for this action to be executed. This is accomplished through the

SimExec Agent that is also running simultaneously with our agent and serves as the

link between our agent and the VBS2 environment.

3.3 Evaluation

As a proof of concept, we evaluate the approach using three measure of per-

formance. First, the training set of recorded actions is evaluated to determine the

classifier performance. This will give us an indication the performance we can expect

32

an agent that uses this mechanism to drive its actions. This evaluation is outlined

in Section 3.3.1. Next, we subject the agent to trials of waypoint traversals identical

to those used to generate the training data. The agent executes actions until it has

reached the goal waypoint or a time limit has expired. These events are triggered

by the time and location values stored in the agent state. For the purposes of this

research, the time limit that the agent has is set to one and a half times the maximum

traversal time that was observed in the training data generation (80 seconds). After

a trial has completed, the resulting behaviors are evaluated. This is accomplished

for varying levels of α used in the agent’s utility calculation. These evaluations are

described in Section 3.3.2 and Section 3.3.3

3.3.1 Classifier Performance Evaluation.

Once the classifier has been trained on the agent behaviors, its ability to discern

between the feature samples requires evaluation. In order to examine this ability, the

classifier is evaluated with leave one out validation. This process is identical to the

evaluations conducted in Appendix A. The result of this evaluation is a confusion

matrix which shows the rates at which the classifier correctly identifies a sample as

the correct class, as well as the rate at which the classifier improperly identifies the

sample as the incorrect class. This evaluation is important to the agent evaluation

because the agent’s ability to generate imitation behaviors is limited by the classifier’s

ability to distinguish class samples.

3.3.2 Agent Imitation Evaluation.

The actions that the agent executes are evaluated by classifying the agent gener-

ated traces using the training data set trained classifier. These traces are generated

by directing the agent to traverse the area of interest in the same way that the train-

33

ing data was generated, with the exception that the agent is directed to execute these

traversals five separate times, each time imitating each VBS2 readiness posture. Fur-

thermore, the classification of the agent takes place with the full set of generated truth

data as the training set and the newly generated agent traces as the test data. The

evaluation of these traces includes the feature generation and classification of each

new trace as detailed in Section 3.2.2 and Appendix A. For this initial experiment,

the agent is given a goal waypoint. However, it also is given an α setting that removes

the goal distance from the utility calculation (α = 1), as seen in Equation 7. This al-

lows the agent to exist within the environment with its only goal being to imitate the

desired classes. If the agent fails to reach the goal before a pre-determined timeout

period has transpired, its execution terminates and the next iteration begins. The

expected results of this evaluation is a classification accuracy similar to the classifier

evaluation in Section 3.3.1.

3.3.3 Agent Imitation and Goal Utility Evaluation.

The final evaluation of the agent focuses on the relative weightings of the class

imitation and goal distance within the utility function. Each class performs the same

traversals as in Section 3.3.2; however, each set is run with varying α used in the

utility calculation. This evaluation of utility seeks to determine the point at which

the agent’s ability to reach the waypoint decreases as a result of trying to obtain a

better class representation. This is executed by dictating a range of α values from

α = 1 to α = 0 at 0.1 increments for the utility calculation in Equation 7. The

resulting agent’s imitation evaluation and goal completion success at each value of α

shows the relationship between goal utility and imitation utility.

34

IV. Results

The evaluations of our agent and its component pieces, as described in Section

3.3, are outlined here. We begin with the evaluations of the classification mechanism

utilized in Section 3.2.3.4 and detailed in Appendix A. Next, the agent’s ability to

imitate a chosen VBS2 Readiness Posture is evaluated through classification accuracy

in Section 4.2. Finally, the effects of the utility balance between goal achievement

and class accuracy is examined.

4.1 Classifier Performance Evaluation

All five VBS2 Readiness Postures were logged as they traversed the area of in-

terest 2000 times in 60 distinct paths. These logs are evaluated through the feature

generation and classification mechanisms as described in Section 3.3. After a leave

one out validation of the feature data, the resulting accuracy results are pooled in an

equal weighted accuracy for each class. These results are shown in Table 3.

As seen in the confusion matrix, the classifier is able to classify each withheld

feature sample with an accuracy no less than 0.141 and no greater than 0.42 for

any class. Aside from the “Safe” class, all of the other classes have a classification

accuracy greater than 0.305. These results indicate that the classifier is able to

Table 3. Classifier Accuracy where rows represent the generated classes and columns
represent the average prediction rates of each class across a leave one out cross valida-
tion

Aware Careless Combat Safe Stealth
Aware 0.352 0.107 0.174 0.083 0.286

Careless 0.249 0.305 0.077 0.075 0.296
Combat 0.050 0.029 0.420 0.169 0.333

Safe 0.220 0.052 0.217 0.141 0.371
Stealth 0.225 0.045 0.253 0.096 0.382

35

separate each class by its component feature sets with accuracies that are greater

than random (except for the “Safe” class). This indicates that the classifier is capable

of distinguishing between features of each class, but it also indicates that our feature

generation is not exceptionally good at providing classification insight for this dataset.

Similarly, These values are lower than those seen in our preliminary studies outlined

in Appendix A. This is likely due to the new data set being more exhaustive and

less biased toward specific feature space attributes that were easily separable between

classes.

The results of the classification of the “Safe” agent’s features requires extra scrutiny.

It is not surprising to see that the “Safe” behaviors are being confused with other

classes, as the description of the class in Appendix B indicates that it behaves like

“Aware” when in contact with enemy forces. As our scenario required the agent to

traverse across a path that frequently caused the agent to come in contact with an op-

posing force, it is understandable that the “Safe” class would have generated feature

sets that are difficult to distinguish between other classes that it behaves similarly in

these kinds of situations.

It is important for the classifier to have the ability to differentiate between each

class. This evaluation has shown that the classifier is able to make this type of

differentiation and is a viable mechanism for the use of agent behavioral imitation.

4.2 Agent Imitation Evaluation

Similar to the evaluation of the classifier evaluation in Section 4.1 the evaluation

of the agent imitation is performed by generating behaviors and classifying their

resultant feature sets. The classification accuracy here indicates the agent’s ability to

imitate the desired class, while incorrectly classified feature sets indicate failures of

the agent’s imitated behaviors. Another factor that contributes to this evaluation is

36

Table 4. Agent Behavior Classified Accuracy. Constructed in a simlar way as Ta-
ble 3 except the confusion matrix shows the classification accuracy of the new agent
behaviors.

Aware Careless Combat Safe Stealth
Aware 1 0 0 0 0

Careless 0 1 0 0 0
Combat 0 0 1 0 0

Safe 0 0 0 1 0
Stealth 0 0 1 0 0

the α used in Equation 7. For the purposes of this evaluation α is set to 1, effectively

removing the goal location from the agent’s utility calculations. Table 4 shows the

agent’s confusion matrix over traversals of the area of interest.

As seen in the confusion matrix the classifier classifies each agent generated sample

with 100% for every class except “Stealth”. The “Stealth” class is incorrectly labeled

as “Combat”. We believe this to be a result of our design decision in Section 3.2.3

which limited the agent to three velocities but not a stationary selection (velocity

equal to zero). The rational for this decision was to prevent the agent from simply

stopping actions once it was in a state that was identified as appropriate, however

the adverse effect to the “Stealth” class, which travels at very slow speeds when in

contact with enemies, was not predicted. This agent limitation, coupled with the class

similarities indicated by the classifier results of Section 4.1 resulted in the incorrect

class labeling as seen in Table 4.

Aside from this class, every other class had exemplary classification performance.

This indicates that the agent is capable of producing class specific behaviors that are

highly correlated with the desired class. During these class utility trials, we found

that the agent behaviors were never able to achieve the goal in their 300 traversals.

This also indicates that the agent behaviors, while class appropriate, do not aid in

achieving a geographic objective.

37

It is also worth noting that these performance which are much better than those

seen in the classifier accuracies of Section 4.1 are understandable within the context of

how the agent uses the classifier to drive its action selection and how the feature space

is divided. Since the agent has the ability to select actions based on the resulting

classification of its actions, it is always able to select actions that may move it closer to

the class mean in feature space. When it is time to classify the agent’s performance the

agent’s feature vector distance from each class mean is calculated and the predicted

class is the lowest distance. This mechanism has a distinct volume of success in

feature space the agent need only to stay within the bounds of the class in order to

succeed.

4.3 Agent Imitation and Goal Utility Evaluation

The final evaluation of the agent focuses on the relative weightings of the class

imitation and goal distance within the utility function. Each class performs the same

traversals as in Section 3.3.2, however, the process is repeated with α utility calcu-

lation values between 0 and 1 at 0.05 increments. This is performed at one trial per

class, α, and start-goal waypoint, combination. The resulting five class average and

class independent Average Imitation Correctness and Goal Accomplishment Rates

across each α as shown in Figure 5.

This evaluation of utility seeks to determine the point at which the agent’s ability

to achieve the goal decreases as a result of systematically decreasing the weighting

attributed to the goal distance utility. This tradeoff point can be seen in the Five

Class Average subplot of Figure 5 at the α level of 0.6 where the goal achievement

rate is approximately equal to the class accuracy. This is similarly seen in each class’s

independent subplots, however, at different α levels.

A higher imitation level at the lower end of α indicates that the class that is

38

Figure 5. Average Class Imitation Accuracy and Goal Completion Rate over α

being evaluated may have been similarly goal oriented and less susceptible to altering

their interactions because of the presence of the opposing forces. This is seen in the

“Aware” and “Combat” classes as they have a significantly high average imitation

accuracy for low values of α.

39

The “Stealth” class imitation accuracies are also interesting. Not only is it inca-

pable of imitating the appropriate class for the reasons posited in Section 4.2, but it

is at a level lower than what would be expected from random performance (expected

to return a correct value 20% of the time). This also supports the ideas of Section 4.2

as the agent may have never been able to make actions that moved its feature vector

near the “Stealth” classification center.

Overall, with the exception of the “Stealth” class, we see the expected tradeoff

between class accuracy and goal utilities. This tradeoff between behavioral accuracy

and goal accomplishment serves as a powerful tool that can be used to alter and vary

agent performance to fit the desired training goals.

40

V. Conclusion

This research has shown that our behavioral imitation driven agent is capable of

producing new, training class specific behaviors within the Simulated Training Envi-

ronment. Given these observed behaviors, agents can be designed and implemented

to utilize this additional information to imitate behaviors in tandem with other agent

goals. These effective imitations can ultimately be used to improve the legitimacy

and applicability of a STE by incorporating observed behaviors into the agent cre-

ation process alongside other traditional agent creation mechanisms through a utility

balancing parameter α.

5.1 Analysis of Results

Our results also indicate that our agent is capable of producing class specific

behaviors with a very high degree of accuracy. This ability, without the use of goal

based utility, is not, however, capable of travelling to a waypoint.

We have also shown that there is a tradeoff between behavioral imitation and goal

completion. This tradeoff indicates that the learned feature space representation of

agent behaviors does not encapsulate enough information to drive a fully functional

agent. Conversely, we have also shown that the purely goal-based utility agent is

not able to imitate specific behavioral classes. Furthermore, we have shown that a

mixture (α) between imitation and goal utility results in a successful agent behaviors

that are both behaviorally consistent and accurate as well as able to accomplish a

traversal goal.

41

5.2 Future Work

The data used for the training portions of our agent creation was generated by

basic scripted agents. These behaviors were simple; however, they provided a difficult

case study for a behavior imitation agent to replicate within this domain. This portion

of the agent creation can be improved upon by using more complex agents, human

traces, dynamic environments, or a combination of each. These increasingly complex

data sets will yield a different feature space for the agent to adapt to.

Another addition that would be required if the complexity of the scenario were

increased would be the ability to select features and weight them according to their

separability. This could be accomplished by analyzing each feature with a Bhat-

tacharya coefficient for separability between each pair of classes. The features with

the greatest separability between each of the classes would be retained while those

features that have low separability would be discarded.

Furthermore, not only can features be selected based on their separability, but new

features can be implemented in order to encapsulate specific, measureable qualities

of the agent trace. These additional features can also be evaluated and selected by

the previously mentioned feature selection process.

The classification portion of our agent relies simply on the mean locations of

the distributions of each class in feature space. This is a simplistic way of evaluating

features because it does not take into consideration variances within the feature space

of a class. Because of this neglection of variance, there are definitive lines of separation

within the feature space that dictate where one class ends and another begins. This is

not a representative way of evaluating new features and could be improved by taking

the variance of the feature space into consideration when classifying a new sample.

The agent’s ability to search through the action space is limited by the time

required to take the previous action and poll the agent for a new action. In order to

42

facilitate this capturing, analysis, and action dynamic from lagging behind the total

possible move search space was condensed. For example, if the agent were quicker

at evaluating a move, we could task it with evaluating all 360 degrees of possible

orientations instead of the current 12. One way of improving this performance would

be to multithread the process. The agent could also be tasked with a deeper search

space. Currently, the agent only searches one move deep into the action space, whereas

if it were multithreaded and quicker to evaluate, the agent may be able to make more

appropriate choices.

The approach to balancing the agent’s ability to vary the degree of influence that

goal achievement and imitation accuracy through the utility calculation in Equation

7 can be improved in two ways. First, the calculated distances in feature space and

physical space can be normalized to values between 0 and 1. This would prevent either

of the two considerations from being discounted because of a large difference between

the magnitude of the two results. Next, the utility calculation can be altered to

prevent the resulting utility of either component from exponentially growing as their

respective distances approaches 0. In the equation’s current form, this is a result of

setting the distances as the denominator. A new utility that would incorporate the

desire to minimize the distance space, while preventing the exponential growth of

utility as those distances approach zero can be seen in Equation 8

U(Fi, S
′
i) = (α)(1− dF (Fi, Cj)) + (1− α)(1− dS(S ′i, G)) (8)

Another area of the agent design that has potential for future work is the ad-

ditional, non-imitation goals that the agent tries to accomplish while maintaining a

distinct behavior class. These goals can be increased in difficulty, scope, and range

in order to stress and evaluate the performance of the agent’s learned behaviors.

Additional goals may include multiple waypoint geographic goals, hostile avoidance

43

goals, and an adherence to a set of Rules of Engagement. These types of evaluations

illustrate the versatility of this type of approach.

Similar to the addition of different goals, the principles and agents developed for

this environment are easily adapted for different domains. These types of domain

changes would simply require an analysis and development of features that are ap-

propriate for the domain and the sensors available.

44

Appendix A. Feature Generation and Classification of

Agent Behavior in a Virtual Battlespace Simulation

This appendix is the full text of a publication ready document written by 2d Lt

Bryon Fryer, 2d Lt Christopher Cooper, Lt Col Brett Borghetti, and Maj Michael

Mendenhall. Along with conference submission, it will also be filed as a Tech Report

at the Air Force Institute of Technology.

Military organizations need realistic training scenarios to ensure mission readi-

ness. Training the skills required to differentiate combatants from non-combatants

is very important for ensuring the international law of armed conflict is upheld. In

simulator-based training, one of the open challenges is to correctly simulate the ap-

pearance and behavior of combatant and non-combatant agents. One approach is to

map the combatant identification problem to the more general pattern classification

problem from the statistical machine learning domain. A data-driven feature selec-

tion and classifier can evaluate whether the “sweet spot” has been achieved: the point

where simulated combatant and non-combatant agent behaviors are hard enough to

distinguish that the training goals are met but not so hard that the two classes are

indistinguishable.

In a simulated urban environment a classifier can be trained on the attributes of

the agent behaviors and thus evaluate the quality of the simulated agents. With 48

derived features a Minimum Euclidean Distance classifier consistently obtained an

average Equal Weighted Accuracy greater than 90% when classifying agent types in

the Virtual Battle Space 2 environment.

A.1 Introduction

Military operations occur increasingly in urban, civilian-occupied areas, and the

need for the ability to rapidly distinguish between combatants and non-combatants

45

in areas of interest is clear. Military organizations invest heavily in training their

members to handle difficult hostile situations. While there is no substitute for a live

training exercise, virtual training through simulation is playing an ever-increasing

role in military training. One of the issues in simulation-based training is the believ-

ability of the computer-generated (CG) agents in the environment. For a training

simulation to be effective, the CG agents must be representative of their live coun-

terparts not just in appearance, but also in behavior. Simulated combatants should

take actions appropriate for opposing forces, while simulated non-combatants should

behave according to the demographic they represent in the situation.

The overarching goals of research in this area are:

1. Improve the realism of CG agents by providing believable agents.

2. Develop methods for objectively measuring believability of CG agents.

This research focuses on the second goal - developing methods for measuring

believability of computer-generated agents. Our approach is to map the problem of

determining believability to the problem of pattern classification [16]. Much of the

work in pattern classification can be categorized into three areas:

• Finding a set of features that accurately and efficiently represents the entities

which need to be classified

• Determining to which of several classes an entity belongs

• Determining how well a certain classifier performs in the role of classifying a set

of entities

In distance-based classifiers, the distance (in feature-space) from an entity to it’s

true class median or mean could be used to characterize the believability that the

entity is really in that class: the further the entity is from it’s class, the less believable

46

it will be that it is part of the class. In the simulated agent domain, given a distance-

based classifier and well-chosen features, the distance an agent is from it’s true class

is a measure of how believable that agent will be in the simulation.

We must stress the importance of having a good classifier and features. With-

out these, we would not be able to justify the statement that classification distance

implies believability. This paper presents a feature-selection method and a distance-

based classifier that will perform well in classifying agents in the domain. Our clas-

sification experiment is conducted with CG agents operating in the Virtual Battle

Space 2 (VBS2) training environment. The experiment uses various behavior types

for scripted agents traveling to a specified destination. From the agents’ location and

orientation data gathered in the experiment, we generated representative features to

classify the behaviors of the scripted agents. A Minimum Euclidean Distance (MED)

classifier trained on a the data is able to classify a novel agent’s behavior into the

closest class. The independent separability of each feature is measured using the Bhat-

tacharyya Coefficient (BC) [4] between classes. Equal Weighted Accuracy (EWA) is

the measurement used to characterize the quality of the classifier at predicting the

true class of the agents from their behavior.

The remainder of this paper is organized as follows: In the next section, we discuss

related work in the area. Section A.3 identifies the research problem and presents the

four phases of our approach. In Section A.4 the feature selection and classification

results are discussed. Finally, we conclude and present our thoughts on future work

in the area in Section A.5.

A.2 Related Work

Within the area of agent behavior classification, much work involves the world

of RoboCup Soccer. Feature extraction and classification is used to recognize and

47

predict the behavior of robots in the opposing team. Riley and Veloso implement a

time windowing technique to extract simple features and classify the current adversary

into one of several predefined classes for the purpose of robotic adaptation within the

RoboCup domain [26]. Although applied to a different domain, this process remains

very similar to the one presented in this paper.

Wendler and Bach employ case-based reasoning as a means to classify and predict

the behavior of agents in RoboCup [39]. They use simulations of games to train the

classifier to recognize behavior patterns and assume that similar triggering situations

lead to similar behavior patterns. Steffens [32] focuses on tactical moves of the op-

ponent and applies a feature-based opponent modeling framework on observed data.

He matches this data to the most appropriate model and selects a counter-strategy.

Clustering techniques often support classification work. Wunstel’s team applied

self-organizing maps on RoboCup player data to cluster typical agent behavior pat-

terns in order to detect characteristic features of trajectories [40]. Francois’ group

uses self-organizing maps and classification for on-line behavior adaption [17]. Their

work includes a proof-of-concept for adaptive human-robot interaction scenarios, in

particular focusing on autism therapy.

A.3 Research Problem & Approach

Our research goal is to derive and evaluate features of scripted agent behavior and

discover if a classifier is capable of distinguishing between the behavioral attributes of

each type of agent. The work was accomplished in four main phases. The first phase

(Agent Simulation Setup) focused on building the simulation environment, designing

scenarios and tailoring the data extraction methods. The second phase (Path-based

Classification) explored feature extraction, generation, and classifiers to determine the

separability of two different agent paths in the scenario. The third phase (Behavior-

48

based Classification) introduced five agent behavior types in a modified scenario,

explored rank ordering of features for classification quality, and analyzed classifier

performance in both pair-wise classification of the agents by observations of their

behavior. The final phase (Limited Observability Behavior Classification) tests the

the classification mechanism by performing a multi-class classification when agent

behavior is only observable for a short duration instead of the full lifetime of the CG

agent.

A.3.1 Phase 1: Agent Simulation Setup.

One of the first tasks was the determination of the simulation and the virtual

environment. Virtual Battlespace 2 Virtual Training Kit (VBS2 VTK), an out-of-

the-box simulated battlespace training solution used by the US Military for realistic

and immersive training scenarios, stood out as the most applicable simulation envi-

ronment. It is also used for developing and visualizing combat events, search and

rescue operations and humanitarian efforts unfolding in the simulated domain. Our

virtual environment was a recreation of the Ohio State University campus. We chose

this map because it features an urban environment and approximately flat terrain.

Agents moving in this environment will be affected by the buildings and roads.

In order to retrieve data from simulated scenarios we used a VBS2 data logger:

a VBS2 plug-in that interfaces with the simulation environment and records desired

simulation attributes to a log file. For our experiment, the data logger captured the

location (East, North, Up), orientation (degrees), and agent ID of all agents within

the simulation at a sampling rate of 1 Hz.

In this phase we created a single scenario and two agents with different behavior

types. The scenario had a fixed start point and destination for each agent. The

two agents differed in the way they traveled. Agent 1 used VBS2’s built-in pathfind-

49

ing algorithm to find a path from start to destination. Agent 2 was given specific

waypoints that it had to take as it traveled from start to destination (using VBS2’s

pathfinding for inter-waypoint travel). Other than the fact that one type of agent

was given waypoints and the other was not, both agents were the same: they both

were civilian agents with VBS2 default behavior and skill levels. In addition to the

buildings present on the Ohio State campus, a congregation of loitering civilians was

placed near the scenario’s destination point to force interaction between the agents

and other mobile entities in the environment.

Because the waypoints force one agent to have a different path from the one chosen

by the non-waypoint agent, the paths of the two scripted agents clearly differentiates

the agents to an outside observer. In Figure A.1 the paths of the agents are shown in

blue (waypoint agent) and red (non-waypoint agent). In this figure, the the civilian

population is represented by the green spot in the northwest corner of the scenario.

The straight line from the start location to the finish location indicates the ‘as-the-

crow-flies’ path from the start to the destination.

Figure A.1. Two Scripted Agent Trails. Graph axes indicate relative position in meters.
Agent 1 is given a start and destination point and uses built-in pathfinding to travel to
the objective. Agent 2 is given fixed waypoints which must be traversed on the route
to the destination. Paths and smoothed averages (10 second windows) are shown for
each agent. The ‘as-the-crow-flies’ direct route between start and finish is also shown.

50

A.3.2 Phase 2: Path-based Classification.

This phase encompassed two tasks using the data collected in the first phase:

feature generation and classification. Using the data logged from the scenario in

phase one we were able to select features and train a classifier which could identify

which agent type (waypoint or non-waypoint) was operating in the scenario.

Feature generation dominated the workload in this phase. From the simulation

environment, VBS logged the position and orientation of the agents at a frequency

of 1 Hz. In order to use the data gathered for classification purposes, we collected

all of the position and orientation data for the entire path each agent took, then

reduced the representation of each agent’s path to a single representative point in

multidimensional space: one point represents the entire path the agent took in the

scenario. To capture the essential information about the behavior of each agent, we

generated 48 representative features1 for each trail. These features included average

location, deviation from the ‘as the crow flies’ straight-line path (shown in Figure A.1),

directional movements quantized as shown in Figure A.2, and various other derived

calculations from the measured information about the trail.

The feature generation step provided samples to train a classifier. We used a

k-nearest neighbor classifier with k equal to one and determined the distance to

neighbors by the Euclidean distance between a sample’s 48-dimensional location and

each class’s mean and median location. With 30 samples of each agent performing

the directed task, we trained the classifier on 27 of the samples from each class and

tested on each of the 3 left out samples. We used K-Fold Cross Validation with K=10

1Features were 1: goal completion time; 2: Average East position in meters (E); 3: Average
North position in meters (N); 4: Average Up position in meters (U); 5: Orientation in degrees (O);
6-9: variance on E, N, U, O; 10-13: total change in E, N, U, O; 14-21: total move count in each of
eight cardinal directions (N, NE, E, . . . , SW); 22: total O change count while stationary; 23: total
standing still count; 24-27: average change in E, N, U, O; 28: total moves made; 29: total deviation
(from ‘as the crow flies’ shortest possible path); 30: average deviation; 31-38: features 14−21

feature 28 ; 39-48:
features 14−23
sample count .

51

Figure A.2. Relative Agent Movement Directions. Agent movement is quantized into
one of eight key directions.

(90% training data, 10% testing data) to ensure the classifier didn’t just get lucky

on one specific choice of testing or training data. We used Equal Weighted Accuracy

(EWA) to characterize classification performance.

For each class, the classifier correctly identified each test sample 100% of the time

for both the mean as well as median Euclidean distance classification. This proof-of-

concept experiment successfully demonstrated that a MED classifier can accurately

differentiate between paths of two scripted agents in this simulated domain. It also

implied the feasibility of a behavioral classifier for classifying agents in the problem

domain if the agents behavior is revealed by the movements they make when trying

to achieve an objective.

A.3.3 Phase 3: Behavior-based Classification.

With the path-based classification method showing promise in the two-class case,

we proceeded to further refine the system by evaluating classification of multiple

classes of agents with subtler differences between the agents’ behaviors. VBS2 pro-

vides a set of combat behavior attribute settings which are described in detail in the

VBS2 VTK Manual [6]. These attributes define the manner in which an agent reacts

to its environment and include the following types: Careless, Safe, Aware, Combat,

52

and Stealth. Our goal was to determine the ability of the classifier to differentiate

these five agent types based on their behavior within the simulated environment.

For this phase each agent was given the same starting point and destination, but

no waypoints were provided for the agents. The only differences between agent types

was the setting of their combat behavior attribute.

To test our classifier, we needed to redesign the scenario so that there was some-

thing in the environment for the agents to react to. In order to trigger the reactive

combat behaviors unique to each agent type, we replaced the civilian crowd with two

small groupings of forces on opposite sides of a conflict. Each agent being classi-

fied was made a member of one of the combat forces. Based on observations in the

previous phase, we determined that the variance between simulation runs within the

same scenario were relatively small and we chose to simulate ten runs of each agent

behavior type for a total of fifty samples.

With the new data, we extended the feature generation and classification methods

described in phase one. Since each feature used in classification adds computational

complexity to the classification process, we sought to determine which features for

this data-set were most beneficial for the classification algorithm. Our goal was

to obtain the same classification performance faster by elimination non-contributing

features. The Bhattacharyya Coefficient (BC) provides a means to rank order the

features by their separability. We calculated the BC of each feature between all pairs

of classes and evaluated the average of these coefficients for each feature in order to

determine the features that provided the most (relative) separability across all of the

data collected. We ran a pair-wise classification between each of the five behavior

types, leaving one sample out from each of the two selected classes (retaining a 90%

training data and 10% testing data ratio).

53

A.3.4 Phase 4: Limited Observability Behavior Classification.

While achieving strong classification results in the multi-class task is necessary, it

is unlikely that in the real world a trainee would have visibility of the entire lifetime

of any one CG agent. It is much more likely that the trainee would be able to observe

the CG agent for a relatively short period of time during it’s lifespan. Given this

limitation, we decided to explore what would happen if a classifier had to make a

classification decision under such circumstances.

In order to test the performance of the classifier when it had a limited observation

of a CG agent’s behavior, we divided the agent trails into smaller time windows. We

varied the window length from 2 seconds through 80 seconds. Smaller window lengths

decrease the number of different values a feature could take on, while simultaneously

increasing the number of samples available for training and testing. We ran a full

feature generation, classification and accuracy determination using ten-fold cross val-

idation. For each window length, we calculated the all-class EWA of the classifier (in

contrast to all-possible-pairwise-comparison EWA evaluated in phase three).

A.4 Results

In phase three, average EWA (mean MED and median MED) was calculated using

all 48 derived features for ten iterations of K-fold cross validation (where k=10) of

each pairwise comparison between the five classes. Average EWA was also calculated

on a subset of eighteen features chosen because they represent the normalized number

of directional moves and orientation changes of the agents. Results of the EWA for

both the subset and the full set of features are depicted using a EWA matrix in

Figure A.3. In pairwise classification, the EWA of the full feature set outperforms

the EWA of the classifier trained using a smaller set of features in all but one case:

Class 2 (Careless) vs Class 4 (Safe).

54

Figure A.3. Pairwise Average EWA. The value in a cell indicates a binary classifier’s
ability to separate the class indicated in the row from the class indicated in the column.

Figure A.4. Weighted Average BC. The value in a cell indicates the average Bhat-
tacharyya Coefficient for all considered features when attempting to differentiate the
row class from the column class. The closer the number to zero, the easier the two
classes will be to separate using those features.

We then estimated which of the class pairings are more separable than others

using modified Bhattacharyya Coefficients as a heuristic. In order to accomplish

this we determined the average BC between each pairwise set of classes across both

the reduced feature set and all features. These values were then weighted by the

number of features taken into consideration. The result was the Weighted Average

Bhattacharyya Coefficients (W.A. BC) for each pairwise class comparison and for

each set of features. These results can be seen in Figure A.4. A higher W.A. BC

value implies that a classifier using those features would have a harder time separating

the two classes.

55

Figure A.5. Five-class EWA as a function of observed time window length. The hori-
zontal line at 0.2 indicates the accuracy of a purely random selection.

The goal of phase three was to predict which class (from the full set of five classes)

a CG agent was from. The classifier was capable of correctly identifying a sample

with an average EWA of 96% and 98% using the median and mean respectively as

the measures of center. The only mis-classifications occurred between the “Safe” and

“Careless” classes which are described in the VBS2 VTK Manual as being very similar

in appearance [6].

In phase four we explored how the length of time an agent was able to be observed

affected classification accuracy. We found that using the smallest time window (2 sec-

onds of observed behavior) our classifier was able to correctly identify an agent twice

as often as would be predicted by a random choice, indicating that these feature selec-

tion and classification methods work even in conditions of limited time visibility. In

the region we tested (2 to 80 seconds), classification performance increases at a rate

proportional to the log of the window size. These accuracies are shown in Figure A.5.

56

A.5 Conclusion and Future Work

Our research showed that classification of features derived from the position and

orientation of agents is a potential mechanism for identifying an agent based on their

behavior in the simulation. The MED classifier was successful in identifying scripted

agents by their observed behaviors based on the slight differences in their derived

features, even when the features were derived during very short windows of visibility.

Given the assumption that humans working in simulated training environments are

looking at the same types of features when deciding how believable a CG agent is, this

kind of classification mechanism can be used to measure believability of the agents.

These results are contingent on assumptions about a human’s characterization of

believability as well as experiment design assumptions and simulation environment

limitations. Further exploration of the feature selection and classification is necessary

in several areas: 1) What are the features that a human observer actually bases a

decision on when determining the believability of an agent? 2) How can we do better

at selecting a subset of features that would maximize classifier performance? 3) What

other classifiers might be more appropriate than the MED classifier?

Acknowledgments

The authors would like to thank the Air Force Research Laboratory’s 711th Hu-

man Performance Wing for their sponsorship of this research and Numerica Corpo-

ration for their technical assistance.

The views expressed in this article are those of the authors and do not reflect the

official policy or position of the United States Air Force, Department of Defense, or

the U.S. Government

57

Appendix B. VBS2 Specifications and Definitions

B.1 Combat Modes

This setting defines whether or not the AI group will engage enemy targets. The

available options are:

• No change: The group will continue under its existing combat mode.

• Never fire: The leader will order the group to hold fire and disengage. The

group will not fire under any circumstance. (Also known as combat mode

BLUE)

• Hold fire: The leader will order the group to hold fire and disengage. Individual

units may open fire on any enemy units that are a threat. (Also known as combat

mode GREEN)

• Hold fire, engage at will: The leader will order the group to hold fire but

engage enemy units at will. Individual units will move into a position from

where they may shoot at the enemy, but will only open fire on an enemy unit

that becomes a threat. (Also known as combat mode WHITE).

• Open fire: This is the default Combat Mode. Units will fire upon any suit-

able target in range, while staying in formation. The group leader may order

individual units to engage targets. (Also known as combat mode YELLOW)

• Open Fire, Engage At Will: The leader will order units to fire upon any

suitable target in range, and move to engage at will. Units may move out of

formation in order to find suitable firing positions on known targets. (Also

known as combat mode RED)

58

B.2 Readiness Postures (Behaviors)

Behaviors define the manner in which a group moves from one point to another.

Combat mode overrides all other movement setting (ie Combat Mode, Formation and

Speed). Available settings are:

• No change: The group behavior will remain as current.

• Careless: Careless behavior will cause the group to move and behave in a

very non-combat manner. The group will form into a Compact Column like

formation, where each unit will directly follow the man in front rather than the

group leader. Soldiers will carry their weapons in safe position (rifles across

body, pistols holstered) and walk slowly. Infantry will not fire on enemy targets

(unless they are shot at), but vehicles will still fire on enemies when encountered.

Groups in careless mode do not switch to a more alert mode if enemies are

encountered. All units show preference moving along roads whenever possible.

• Safe: Similar to Careless, except the group will change behavior to Aware upon

detecting an enemy unit.

• Aware: This is the default behavior mode. The group will move at moderate

speed, with soldiers generally standing upright and making some occasional

efforts to use cover when available. Most units will still prefer to travel along

roads and travel in convoy irrespective of formation type. Tracked vehicles

will not use headlights, and will drive across any surface with no preference

to staying on roads. Helicopters will not use searchlights. When enemies are

known to be in the area, troops will disembark from any of their group’s wheeled

transport vehicles (trucks, cars), and the group will move while carrying out

”bounding” maneuvers, making stronger use of available cover.

59

• Combat: This behavior mode will result in a much higher combat performance

than Aware. Infantry groups will always move using bounding maneuvers, and

will normally keep crouched or prone unless moving. They will make some use

of available cover, choosing to spend some time crawling when in cover. They

will occasionally send out one unit ahead of the group as a scout. No vehicles

will use headlights at night. If enemy units are known to be in the area, infantry

groups will move in a more cautious manner.

• Stealth: Stealth mode will cause a group to behave in a more cautious manner.

Infantry groups will move via cover whenever possible, spending much of their

time crawling. When they need to cross open ground, they appear to occasion-

ally choose to send scouts running ahead to reach the cover ahead as quickly

as possible. A stealthy infantry formation can tend to end up quite fractured.

Wheeled vehicles will still follow roads if available, but no longer convoy. If en-

emy units are known to be in the area, infantry groups will move more closely

together and spend more time prone.

B.3 Unit Stance

Unit Stance defines the starting posture of the AI unit. This setting will not be

overridden by the group commanders current waypoint. Available settings are:

• AI controlled: The units posture will be controlled by the AI

• Standing: The unit will always remain standing

• Kneeling: The unit will kneel, unless moving to point to point where the unit

will stand

• Prone: The unit will always remain lying, even when moving from point to

point where the unit will crawl

60

Appendix C. Average Class Imitation Accuracy and Goal

Completion Rate over α

α goal cls c0ga c1ga c2ga c3ga c4ga c0ia c1ia c2ia c3ia c4ia

0.00 1.00 0.20 1.00 1.00 1.00 1.00 1.00 0.33 0.04 0.38 0.17 0.08

0.05 1.00 0.21 1.00 1.00 0.98 1.00 1.00 0.33 0.04 0.44 0.13 0.13

0.10 0.97 0.22 0.98 0.94 0.94 0.98 1.00 0.31 0.04 0.50 0.13 0.10

0.15 0.93 0.21 1.00 0.88 0.77 0.98 1.00 0.33 0.04 0.44 0.15 0.10

0.20 0.77 0.23 0.96 0.65 0.56 0.85 0.83 0.29 0.23 0.40 0.17 0.08

0.25 0.74 0.33 0.79 0.56 0.58 0.90 0.85 0.33 0.35 0.69 0.17 0.08

0.30 0.68 0.36 0.83 0.52 0.33 0.83 0.88 0.29 0.42 0.83 0.17 0.10

0.35 0.68 0.33 0.73 0.58 0.42 0.85 0.83 0.35 0.38 0.69 0.15 0.08

0.40 0.68 0.30 0.83 0.52 0.33 0.83 0.88 0.29 0.42 0.83 0.17 0.10

0.45 0.61 0.36 0.71 0.52 0.27 0.81 0.75 0.46 0.35 0.73 0.13 0.13

0.50 0.59 0.36 0.67 0.46 0.46 0.63 0.73 0.46 0.35 0.69 0.21 0.10

0.55 0.46 0.39 0.56 0.38 0.29 0.46 0.60 0.56 0.35 0.77 0.15 0.13

0.60 0.37 0.39 0.83 0.52 0.33 0.83 0.88 0.29 0.42 0.83 0.17 0.10

0.65 0.23 0.35 0.31 0.13 0.21 0.25 0.27 0.50 0.17 0.83 0.17 0.10

0.70 0.16 0.37 0.21 0.06 0.19 0.21 0.13 0.58 0.17 0.75 0.23 0.13

0.75 0.14 0.44 0.15 0.10 0.15 0.19 0.13 0.58 0.23 1.00 0.33 0.06

0.80 0.10 0.43 0.06 0.04 0.25 0.06 0.08 0.69 0.27 0.90 0.21 0.10

0.85 0.07 0.55 0.04 0.06 0.06 0.08 0.08 0.90 0.42 1.00 0.35 0.06

0.90 0.04 0.59 0.06 0.02 0.06 0.02 0.04 0.83 0.65 1.00 0.38 0.07

0.95 0.07 0.67 0.02 0.06 0.02 0.10 0.13 0.96 0.77 0.98 0.46 0.17

1.00 0.02 0.80 0.00 0.00 0.04 0.00 0.04 1.00 1.00 1.00 1.00 0.00

61

Appendix D. Scenerio Generation Specifics

Table D.1. X Cordinates

x0 325
x1 375
x2 425
x3 475

Table D.2. Y Cordinates

y0 2100
y1 2150
y2 2200
y3 2250

Table D.3. Start Locations

s0 x0, y0 325, 2100
s1 x0, y1 325, 2150
s2 x0, y2 325, 2200
s3 x0, y3 325, 2250
s4 x1, y3 375, 2250
s5 x2, y3 425, 2250
s6 x3, y3 475, 2250
s7 x3, y2 475, 2200
s8 x3, y1 475, 2150
s9 x3, y0 475, 2100
s10 x2, y0 425, 2100
s11 x1, y0 375, 2100

62

Table D.4. Traversal Selections

Start Location Destinations
s0 s4, s5, s6, s7, s8
s1 s5, s6, s7, s8, s9
s2 s6, s7, s8, s9, s10
s3 s7, s8, s9, s10, s11
s4 s8, s9, s10, s11, s0
s5 s9, s10, s11, s0, s1
s6 s10, s11, s0, s1, s2
s7 s11, s0, s1, s2, s3
s8 s0, s1, s2, s3, s4
s9 s1, s2, s3, s4, s5
s10 s2, s3, s4, s5, s6
s11 s3, s4, s5, s6, s7

63

Bibliography

[1] Aler, R., J.M. Valls, D. Camacho, and A. Lopez. “Programming Robosoc-
cer agents by modeling human behavior”. Expert Systems with Applications,
36(2):1850–1859, 2009.

[2] Bain, M. and C. Sammut. “A Framework for Behavioural Cloning”. Machine
Intelligence 15, 103–129. Oxford University Press, 1996.

[3] Bakker, Paul and Yasuo Kuniyoshi. “Robot See, Robot Do : An Overview of
Robot Imitation”. In AISB96 Workshop on Learning in Robots and Animals,
3–11. 1996.

[4] Bhattacharyya, A. “On a measure of divergence between two statistical popula-
tions defined by probability distributions”. Bull. Calcutta Math. Soc, 35:99–109,
1943.

[5] Blascovich, J., J. Loomis, A.C. Beall, K.R. Swinth, C.L. Hoyt, and J.N. Bailen-
son. “Immersive Virtual Environment Technology as a Methodological Tool for
Social Psychology”. Psychological Inquiry, 13(2):103–124, 2002.

[6] Bohemia, Interactive. “VBS2 Editor Manual 1.02 : Offline Mission Editor Real-
Time Editor”. Website, 2007. Bohemia Interactive Australia Pty. Ltd.

[7] Brockington, M. and M. Darrah. “How not to implement a basic scripting lan-
guage”. AI Game Programming Wisdom, 548–554, 2002.

[8] Brown, J.S. and R.R. Burton. “Diagnostic models for procedural bugs in basic
mathematical skills”. Cognitive science, 2(2):155–192, 1978.

[9] Buro, M. and T. Furtak. “RTS Games as Test–Bed for Real–Time AI Research”.
Proceedings of the 7th Joint Conference on Information Science (JCIS 2003),
2003.

[10] Dahlbom, A. An adaptive AI for real-time strategy games. Ph.D. thesis, Univer-
sity of Skovde, School of Humanities and Informatics, 2004.

[11] Dahlbom, A. and L. Niklasson. “Goal-directed hierarchical dynamic scripting
for RTS games”. Proceedings of the Second Artificial Intelligence and Interactive
Digital Entertainment Conference, 21–28. 2006.

[12] Davis, J. “OSU GIS data”. Dept. of Computer Science & Engineering, Ohio
State University. www.cse.ohio-state.edu/̃jwdavis.

[13] Devijver, P. and J. Kittler. Pattern Recognition: A Statistical Approach. Prentice
Hall, 1982.

64

[14] DHS. “Secret Service Site Security Training Gains a High-Tech Edge”. Website,
Jan 2011. www.dhs.gov/files/programs/gc 1295637658955.shtm.

[15] Dompke, U. “Computer Generated Forces-Background, Definition and Basic
Technologies”. Simulation of and for Military Decision Making, 2003.

[16] Duda, Richard O., Peter E. Hart, and David G. Stork. Pattern Classification.
Wiley, 2 edition, November 2001. ISBN 0471056693. URL http://www.amazon.

com/exec/obidos/redirect?tag=citeulike07-20\&path=ASIN/0471056693.

[17] Franccois, Dorothée, Daniel Polani, and Kerstin Dautenhahn. “On-line be-
haviour classification and adaptation to human-robot interaction styles”. Pro-
ceedings of the ACM/IEEE international conference on Human-robot inter-
action, HRI ’07, 295–302. ACM, New York, NY, USA, 2007. ISBN 978-
1-59593-617-2. URL http://doi.acm.org/10.1145/1228716.1228756;http:

//doi.acm.org/10.1145/1228716.1228756.

[18] Guadagno, R.E., J. Blascovich, J.N. Bailenson, and C. Mccall. “Virtual humans
and persuasion: The effects of agency and behavioral realism”. Media Psychology,
10(1):1–22, 2007.

[19] Hoffman, D. “Analysis of a Taxonomy for Test Oracles”. Quality Week, vol-
ume 98. 1998.

[20] Interactive, Bohemia. “Bohemia Interactive announce USMC Partnership”.
Website, 2009. http://www.bisimulations.com/index.php?&Itemid=73.

[21] Laird, J.E. “An Exploration into Computer Games and Computer Generated
Forces”. Eighth Conference on Computer Generated Forces and Behavior Rep-
resentation, 2000.

[22] Maybury, Mark T. “Technology Horizons : A Vision for Air Force Science &
Technology During 2010-2030”. Office of the Chief Scientist of the U.S. Air
Force, 2010.

[23] Nakano, A., A. Tanaka, and J. Hoshino. “Imitating the Behavior of Human
Players in Action Games”. Entertainment computing–ICEC 2006: 5th inter-
national conference, Cambridge, UK, September 20-22, 2006: proceedings, 332.
Springer-Verlag New York Inc, 2006. ISBN 3540452591.

[24] Numerica, Corp. “SimExec Agent”. Digital Software, 2010.

[25] Numerica, Corp. “VBS2 Logger Plugin”. Digital Software, 2010.

[26] Riley, P. and M. Veloso. “On Behavior Classification in Adversarial Environ-
ments”. Distributed Autonomous Robotic Systems 4, 371–380. Springer-Verlag,
2000.

65

[27] Riley, P. and M. Veloso. “Coaching a simulated soccer team by opponent model
recognition”. Proceedings of the fifth international conference on Autonomous
agents, 155–156. ACM, 2001.

[28] Robson, S. “Army paying 17.7M for training game”. Website, Jan 2009.
http://www.stripes.com/news/army-paying-17-7m-for-training-game-1.86770.

[29] Scott, B. “The illusion of intelligence”. AI Game Programming Wisdom, 16–20,
2002.

[30] Spronck, P., M. Ponsen, I. Sprinkhuizen-Kuyper, and E. Postma. “Adaptive
game AI with dynamic scripting”. Machine Learning, 63(3):217–248, 2006.

[31] Spronck, P., I. Sprinkhuizen-Kuyper, and E. Postma. “Online adaptation of game
opponent AI in simulation and in practice”. Proceedings of the 4th International
Confrence on Intelligent Games and Simulation (Game-ON 2003), 93–100, 2003.

[32] Steffens, Timo. “Feature-based declarative opponent-modelling in multi-agent
systems”. Publications of the Institute of Cognitive Science, 4-2004(Septemeber),
2004.

[33] Thurau, C., G. Sagere, and C. Bauckhage. “Imitation Learning at All Levels
of Game AI”. Proceedings of the international conference on computer games,
artificial intelligence, design and educatoin, 2003.

[34] Tozour, P. “The evolution of game AI”. AI Game Programming Wisdom, 3–15,
2002.

[35] Tozour, P. “The perils of AI scripting”. AI Game Programming Wisdom, 541–
547, 2002.

[36] Valiant, L.G. “A theory of the learnable”. Communications of the ACM,
27(11):1134–1142, 1984. ISSN 0001-0782.

[37] Webb, G.I., M.J. Pazzani, and D. Billsus. “Machine learning for user modeling”.
User Modeling and User-Adapted Interaction, 11(1):19–29, 2001.

[38] Whetzel, J.H. Developing intelligent agents for training systems that learn their
strategies from expert players. Ph.D. thesis, Texas A&M University, 2005.

[39] Wndler, Jan and Joscha Bach. Recognizing and Predicting Agent Behavior with
Case Based Reasoning, volume 3020 of RoboCup 2003: Robot Soccer World Cup
VII, 729–738. Springer, Berlin, 2004.

[40] Wunstel, Michael, Daniel Polani, Thomas Uthmann, and Jurgen Perl. “Behavior
Classification with Self-Organizing Maps”. RoboCup 2000: Robot Soccer World
Cup IV, 108–118. Springer-Verlag, London, UK, 2001. ISBN 3-540-42185-8. URL
http://portal.acm.org/citation.cfm?id=646585.698842.

66

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,

gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of

information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),

1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an

penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

24-03-2011

2. REPORT TYPE

Master’s Thesis

3. DATES COVERED (From – To)

Aug 2009- Mar 2011

4. TITLE AND SUBTITLE

VIRTUAL BATTLESPACE BEHAVIOR GENERATION THROUGH

CLASS IMITATION

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Bryon K. Fryer Jr., 2d Lt, USAF

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way

WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION

 REPORT NUMBER

 AFIT/GE/ENG/11-12

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Dr. John Duselis
Program Manager - Anticipate and Inuence Behavior Division
John.Duselis@wpafb.af.mil { 937{255{3219
Air Force Research Labs, 711th Human Performance Wing
Bldg 248 2255 H Street WPAFB, OH 45433-7022

10. SPONSOR/MONITOR’S

ACRONYM(S)
AFRL/711 HPW/RHXB

11. SPONSOR/MONITOR’S

REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES
This material is declared a work of the U.S. Government and is not subject to copyright protection in the United
States.
14. ABSTRACT
Military organizations need realistic training scenarios to ensure mission readiness. Developing the skills required to
differentiate combatants from non-combatants is very important for ensuring the international law of armed
conflict is upheld. In Simulated Training Environments, one of the open challenges is to correctly simulate the
appearance and behavior of combatant and non-combatant agents in a realistic manner. This thesis outlines the
construction of a data driven agent that is capable of imitating the behaviors of the Virtual BattleSpace 2 behavior
classes while our agent is configured to advance to a geographically specific goal. The approach and the resulting
agent promotes and motivates the idea that Opponent and Non-Combatant behaviors inside of simulated
environments can be improved through the use of behavioral imitation.

15. SUBJECT TERMS

FPGA, radiation induced faults, single event upset, total ionizing dose

16. SECURITY CLASSIFICATION

OF:

17. LIMITATION OF

 ABSTRACT

UU

18. NUMBER

 OF

 PAGES

 78

19a. NAME OF RESPONSIBLE PERSON
Brett Borghetti, Lt Col, USAF (ENG)

REPORT

U

ABSTRACT

U

c. THIS PAGE

U
19b. TELEPHONE NUMBER (Include area code)
(937)255-3636 x 4612 brett.borghetti@a_t.edu

Standard Form 298 (Rev: 8-98)
Prescribed by ANSI Std. Z39-18

jwebb
Line

jwebb
Text Box
AFIT/GCO/ENG/11-04

	AFIT-GCO-ENG-11-04.pdf
	AFIT-GCO-ENG-11-04.pdf
	AFIT-GCO-ENG-11-04.pdf

	Fryer SF298.pdf

